

2	ii	$\begin{aligned} & y^{\prime}=3 x^{2}-12 x \\ & \text { use of } y^{\prime}=0 \\ & x=0 \text { and } 4 \\ & (0,12) \text { and }(4,-20) \\ & y^{\prime \prime}=6 x-12 \text { used } \\ & \text { max when } x=0, \text { min when } x=4 \\ & \text { when } x=2 y^{\prime}=-12 \\ & \text { grad of normal }=1 / 12 \\ & y+4=1 / 12(x-2) \\ & y=\frac{1}{12} x-4 \frac{1}{6} \end{aligned}$	B1B1 M1 A1 A1 M1 A1 B1 B1ft M1ft A1	Allow $\mathrm{y}=12$ and $\mathrm{y}=-20$ y^{\prime} used each side of TP or good sketch Both stated, only one needs testing from their y^{\prime} accept any numerical m Or $-4=\operatorname{their}(\mathrm{m}) \times 2+\mathrm{c}$ Any recognisable $25 / 6$, at worst 4.1	7 4 [11]

