1	i ii	(2x - 3)(x - 4) x = 4 or 1.5 y' = 4x - 11 = 5 when x = 4 c.a.o.	M1 A1A1 M1 A1	or $(11 \pm \sqrt{(121 - 96))/4}$ if M0, then B1 for showing $y = 0$ when $x = 4$ and B2 for $x = 1.5$ condone one error	3
		grad of normal = -1 /their y' y[- 0]= <u>their</u> -0.2 (x - 4) y-intercept for <u>their</u> normal area = $\frac{1}{2} \times 4 \times 0.8$ c.a.o.	M1f.t. M1 B1f.t. A1	or 0 = their (-0.2)x4 + c dep on normal attempt s.o.i. normal must be linear or integrating <u>their</u> f(x) from 0 to 4 M1	6
	iii	$\frac{2}{3}x^3 - \frac{11}{2}x^2 + 12x$ attempt difference between value at 4 and value at 1.5 [-]5 $\frac{5}{24}$ o.e. or [-]5.2(083)	M1 M1 A1	condone one error, ignore + c ft their (i), dep on integration attempt. c.a.o.	3

2	i	$y' = 3x^2 - 12x$ use of $y' = 0$ x = 0 and 4 (0, 12) and (4, -20)	B1B1 M1 A1 A1	Allow $y = 12$ and $y = -20$	
	ii	y'' = 6x - 12 used max when $x = 0$, min when $x = 4$ when $x = 2$ $y' = -12$ grad of normal = 1/12	M1 A1 B1 B1ft	y' used each side of TP or good sketch Both stated, only one needs testing from their y'	7
		$y + 4 = \frac{1}{12}(x - 2)$ $y = \frac{1}{12}x - 4\frac{1}{6}$	M1ft A1	accept any numerical m Or -4 = their(m) x 2 + c Any recognisable 25/6, at worst 4.1	4 [11]